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Abstract - In the present paper, analytical solutions are obtained using perturbation expansion in powers of
Grashof number for steady, axisymmetric flow of a viscous fluid contained between two concentric spheres. A
uniform gravity field acts vertically downward. The outer sphere is assumed to be maintained at a variable
temperature such that conditions for vertical stratification are satisfied. Analysis is presented for two cases:
when a constant-heat-flux condition on the inner sphere surface is imposed or when its surface temperature is
kept constant. Streamlines, isotherms and velocity components are shown graphically in an axial plane for
each case. For the case of isothermal inner sphere, a dimensionless stratification parameter S governs the
flow. Solutions for § = 0 correspond to the unstratified case. When § tends to infinity, the flow pattern has
both vertical and horizontal symmetry. But when the inner sphere surface is kept at constant heat flux, the
flow and temperature fields are governed by another dimensionless parameter Q. The case ¢ = 0
corresponds to thermally insulated inner sphere. For this case, flow is similar to that occurring when S tends
to infinity, but the directions of the streamlines are reversed.

NOMENCLATURE

All primed quantities are dimensional ; all unprimed
quantities are dimensionless. Subscripted terms with m
denote their corresponding values at the diametral
plane (' = 0, 0 = =n/2).

g, acceleration of gravity;

G, square root of modified Grashof

number [g' f' ri* (dT%,/dy)]' 21V

K, thermal conductivity;

I, Gegenbauer functions of the first kind
and of order m;

Nu;, local Nusselt number on the inner
sphere;

P, Legendre polynomials of the first kind

and of order n;
Q, ratio of the inner sphere constant heat
flux (6T'/0r),_, to (dT'./dy);

r,r, radial coordinate r = #'/r;;

i Fos radii of the inner and the outer spheres;

R, ratio ro/ri;

S, steepness parameter defined as {r)
(dT./dy")} divided by the temperature
difference between inner sphere and the
fluid occupying the diametral plane;

T, temperature T' = T, + ri{dT",/dy")T;

dT,./dy’, constant temperature gradient describ-
ing the constant stratification;

Uy Uy, r-component of velocity v, = v, r/vV'G;

Vg, g 0-component of velocity v, = vy ¥i/V'G;

Yoy Yy =1r'cos 8,y = y/ri = r cos /.

Greek symbols
o, thermal diffusivity;
g, volumetric  coefficient of thermal

expansion;

4, colatitude or polar angle measured from
the upward vertical § = 0;

o, density;

v, kinematic viscosity;

vy, Stream function ¢ = ¥'/Gv".

1. INTRODUCTION

FREE convection heat transfer in spherical annulus has
been the subject of many investigations. Bishop,
Kolflat et al. [1] were first to present the flow
visualization studies depicting three different con-
vective flow patterns of the fluid (air) contained
between two isothermal concentric spheres: two
steady patterns, the crescent eddy and the kidney-
shaped eddy types, and one unsteady pattern, falling
vortices type. These flow patterns depended on the
low-to-large-diameter ratio of the spheres and mod-
erate to large temperature differences. In additional
papers [2-4], measured temperature profiles were
analyzed and overall heat-transfer rates were cor-
related. Yin, Powe et al. [5] performed experiments
concerning natural convection between two con-
centric spheres, the inner one being hotter. The
convecting fluids were air and water. Observed flow
patterns were correlated with previously published
temperature profiles and were categorized in terms of
steady and unsteady regimes. The results of a flow
visualization study of natural convection in air be-
tween a heated sphere and its cooled cubical enclosure
were reported by Powe, Scanlan and Eyler [6]. Mack
and Hardee [7] calculated the first three terms of the
perturbation solution for natural convection between
concentric spheres in powers of Raleigh numbers.
Streamlines, velocity and temperature distributions
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were presented for Raleigh number equal to 1000 and
Prandtl number P equal to 0.7.

Experiments on natural convection from isothermal
spheres and cylinders immersed in a thermally stra-
tified fluid were performed by Eichhorn, Lienhard and
Chen [8]. Heat-transfer results and visual obser-
vations of the flow field were presented for various
values of the steepness parameters S. Hubbel and
Gebhart [9] made observations on convective trans-
portand plume shedding induced by a heated horizon-
tal cylinder submerged in quiescent, salt-stratified
water. Chen and Eichhorn [10] studied both analyti-
cally and experimentally natural convection from an
isothermal finite plate immersed in a stable thermally
stratified fluid. Local and overall heat-transfer coef-
ficients, velocity and temperature profiles were given
for Prandt! number equal to 6. Natural convection
problems from simple bodies immersed in thermally
stratified fluids have recently been reviewed in a report
prepared by Chen and Eichhorn [11]. They gave a
design for an enclosure to produce quickly and reliably
a thermally stratified environment, a problem which is
not as simple as it first appears to be. In the report
overall heat-transfer rates and a limited study of the
behavior of thermal plumes from immersed horizontal
cylinders and spheres in stratified fluids were pre-
sented. Results based on an approximate boundary
layer analysis using local nonsimilarity and series
solution methods compared reasonably well with
those of experiments. Singh [12] obtained analytical
solutions for axisymmetric flow of a vertically stra-
tified viscous fluid by the singular perturbation tech-
nique valid for small Grashof numbers.

Free convection between horizontal concentric cyl-
inders was considered by Singh and Elliott [ 13] when
the outer cylinder is assumed to be maintained at a
variable temperature such that conditions for vertical
stratifications are satisfied. The inner cylinder is either
thermally insulated or its surface temperature is kept
constant. Theoretical solutions were obtained in
power series of Grashof number G and streamlines,
isotherms and velocity profiles were plotted for vari-
ous values of the steepness parameter S. In this paper
the perturbation solution is extended for the free
convection problem between two concentric spheres.
Isotherms, streamlines and velocity components are
shown graphically in an axial plane for various values
of the two dimensionless parameters S and Q and for P
= 0.7, G = 2, the radius ratio R = 2. When the inner
sphere surface is kept at a uniform temperature, details
of the fluid motion are dependent on the steepness
parameter S. Local Nusselt numbers on the inner
sphere Nu; are calculated and the ratio (Nu;/Nu,_) is
plotted vs. 8 for various values of S. In the case of the
inner sphere maintained at constant heat flux, the
parameter @ governs the flow. Streamlines and ve-
locity components, which are qualitatively similar to
those in concentric horizontal cylinders [13], are also
analagous for various values of both parameters S and
Q’, but the flow directions are reversed.
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2. MATHEMATICAL FORMULATION AND PERTURBATION
SOLUTION
A viscous, incompressible fluid occupies the region
between two concentric spheres of radii r; and rj,. The
flow is symmetrical about a vertical diameter which is
taken as the axis 0 = 0 of spherical polar coordinates
(r', 8, ¢) with the origin at the center of the spheres. A
uniform gravity field is acting vertically downward and
hence all quantities are independent of ¢. The inner
sphere is either kept at a constant temperature T or is
maintained at constant heat flux. The outer sphere
surface is maintained at a variable temperature 75,
such that vertical stratification is satisfied, i.e.:
Ty=T, + dT, /dy)rycost, v =r'cost. (1)
The velocity components are related to stream func-
tion y as given by:

vao

U, =~
" 2sin€

/e
o=~ W 2)
rsinf

Introducing the Boussinesq approximation [14]

P Pm

Prm

= - BT ~T,),

T =T,+ @l /dywT (3

into the Navier-Stokes equations, we get for the
steady, axisymmetric motion [7, 12]:
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The boundary conditions in view of (1) and (3) are:

o 1 eT

=— =0,T=-0or—=0Qatr=1; 6

4 ar S or Q ©)
oy ,

Yy =—-—=0,T=Rcosfatr=R. (7
ar

For a given radius ratio R, the solution of (4) and (5)
subject to conditions (6) and (7) depends on three
parameters, P, G, and S or Q. It is obtained in power
series of G when P and S or Q are assumed fixed

W= to(r,0) + Gy, (r.0) + Gy (r.0) + ... (8)
T = Tolr.0) + GT (r.6) + G*T,(r,0) + ... (9)

Substitution of (8) and (9) gives for the zeroth power of
G:
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D*, =0, V2T, = 0. (10)

Since ¥ and dy/0r both vanish at r = 1 and R, ¥, is
zero throughout. Similarly Ty, T5...and Y5, ¢, . . . are
zero. The solution for T, satisfying (6) and (7) is:

1 R R3cosf 1
Tﬁm@”)**("r‘z) (tn

(R*-1)
or
R3cos

T =2(1- 8+ ()
°=R r) R0\ T 22 )

Equations (11) and (12) represent the solution for the
isothermal and constant heat flux inner sphere cases,
respectively. For the next approximation, when (8) and
(9) are substituted into (4) and (5), we get:

(12)

Dy — Rsin?0  3R3sin” @ cos 0 13)
YTSR-r T R DR
and
—0Osin%0 34in2
Dy, = Qsin 3R’sin’* fcos § (14)

(2R3 + 1)r?

The solution of (13) or (14) satisfying , = dy,/or =0,
bothr = 1 and r = R, is:

Y, =(Byr* + D, r*+B,r*+ By r+B,/r)sin?0

+ (Cy PP+ Cyr*+Cor? +C3+Cyfr*)sin® O cos§ (15)
where

B, = D,(2R" —6R®+4R*+4R*—6R*+2R?)/B,

B, = D,(2R®~12R” + 10R®+ 10R® — 12R* + 2R?)/B,
By = D,(—3R°+8R®—5R" —5R%+8R*—3R%)/B,
B, = D,(R®—4R®+6R" —4R® + R%)/B,

By, = —4R®+9R” —10R’ +9R®—4R>
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D, = —R/8S(R—1) for isothermal inner sphere

= (/8 for constant heat flux

and
Co = 6R3/8(R*+6)
C; = Co(R"—6R*+5R*+5R>—6R*+1)/C,
Cy = Co(=3R® +10R” —TR*+10R? - 3)/C;
Cy =2Cy—35C,-2.5C,
Cy =25C+15C,+C,
Cs = 2R —125R7 4 21R* —12.5R3* +2
and ¢ is equal to — 1 when the inner sphere tempera-
ture is constant and 0.5 when the sphere is at constant
heat flux.

Similarly, expressions for T, and 5 can be obtained

by making use of (4), (5), (11), (12), and (15) as given by
the following

3
Ty(r,0) = ;f a(r) P, (cos 6))

Ws(r,0) = Y F,(r)1, (cos )
m=1

where P,(cos#) and I,,(cosf) are the Legendre poly-
nomials and Gegenbauer functions of the first kind
and of orders n and m, respectively [15]. The coef-
ficients f, and F,, are functions of r, R, P and Q, and are
very long. These are omitted to conserve space;
readers interested in them are invited to write to the
authors.

3. DISCUSSION OF RESULTS

First of all, we attempt to find what is the maximum
value of G called G,,, for which the two-terms
expansion solution obtained in powers of G is con-

FIG. 1. Streamlines and isotherms for S = o, G = 2, P = 0.7, R = 2. Radial velocity changes sign at = 54.5
and 125.5°,
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Fici. 2(a). Streamlines and isotherms for § = 1, G = 2, P = 0.7, R = 2. Radial velocity changes sign atf = 18
and 110",

vergent for R = 2, P = 0.7 and various values of S and
Q of order unity. As a crude measure of the upper
bound for convergence Mack and Hardee ([7], §3.1)
defined G,,,, as that value of Grashof number for
which the maximum (with respect to position) magni-
tude of any higher-order term in either series for T and
i equals the maximum magnitude of the appropriate
lowest-order term T, or Gy,. The maximum magni-
tude of r-function coefficients of sin*f and sin26 cos
in (15) are of the order of 10~ 2, whereas the largest val-
ues of the various coefficients of P,{cos ) and I ,{cos 0}
in the expressions for T,(r,8) and Y5(r,6) are of the
order of 107 % and 10~* respectively. Hence, accord-
ing to the above-mentioned criterion we find that the
two-term perturbation solution converges for G < 5.

Behavior of streamlines and isotherms in an axial
plane is described in detail for fixed values of R(= 2),
G(= 2), and P(= 0.7) for many values of S ranging
from zero to infinity. For the steepness parameter S
tending to zero, constant stratification (d7", /dy) van-
ishes and the limit of the solution approaches the
unstratified case of Mack and Hardee [ 7]. For this case

when the inner sphere surface is kept at a temperature
higher than that of the outer sphere, streamlines
consist of single cells of ‘crescent eddy’ type. The flow is
symmetrical about the vertical diameter 8 = 0, x and is
upward along the inner sphere (counter clockwise)
and downward along the outer sphere (clockwise}. But
when S tends to infinitely large values, T} equals T, i.e.
the inner sphere temperature is equal to that of the
diametral plane y’ = 0(8 = n/2) of the outer sphere.
Motion in this case is symmetrical about both the
horizontal (¢ = n/2)and the vertical (§ = 0, n)diamet-
ral planes. The expression for the stream function y,
(15) (the dominant term) becomes, since D, = 0 for
S = o

Yy = sin?0 cosf (Cr® + Cyr® + Cor? + C3+ Cyfr)(16)

The radial velocity component v, for this case is given
by [using (2)]
1 &y (3cos?f—1)
L, = L
" r*sin@ 86 r?

X (CP3+Cor3 4+ Cor + Cy+Cyr?). (17
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F1G. 2(b). Streamlines and isotherms for § = 2.5,G = 2, P = 0.7, R = 2. Radial velocity changes signat =
45 and 118°,

Streamlines for this case are shown graphically in Fig.
1.Since§ = — 1,v,is negative at § = 0, positiveat § =
n/2 and vanished at @ = 54.5°. An inflow at the poles
= ( from the outer sphere to the inner sphere reverses
into an outflow at the equator 8 = n/2, transition
taking place at 8 = 54.5°. Eichhorn et al. [8] observed
a similar streamline picture for § = co in their flow
visualization for a sphere in a stratified medium. In
case of two concentric horizontal cylinders, when the
outer cylinder is maintained at a variable temperature
of a constant stratification type such as presented in
this paper, Singh and Elliott [13] find similar stream-
line behavior for § = oo.

For finite values of the steepness parameters S(0
< § < o), streamlines depend on the basis of super-
position of the two above-mentioned flows for § = 0
and § = oc. When § is very small, motion in an axial
plane is symmetrical in the two halves of the annulus
like that of the unstratified case. But as S is increased
(perhaps to a value of 0.9), the single cell flow changes

into a double cell flow and a region of reversed flow
occurs near = 0. A further increase in the value of §
moves the angle of separation of one cell from the other
toward 8 = =n/2.

Figures 2(a), (b), {c) show plots of the streamlines for
fixed valuesof R = 2,G = 2,P =0.7andfor§ = 1,25
and 10, respectively. These graphs depict the motion
discussed above. The velocity components v, and v, are
shown graphically in an axial plane vs. radial position
for various values of # in Figs. 3 and 4. Radial velocity
v, vanishes and changes sign at 6 = 18°, and 110° for
S=1atf =45 and 118°for § = 2.5and atf = 53°
and 123° for § = 10. Meridianal velocity compon-
ent v, becomes zero and reverses its sign at 8 = 20° for
§=1,at0 = 68 for § = 2.5 and at & < 85° for
§ = 10. The local Nusselt number on the inner sphere
is defined as:

R—l[zﬁT]
Nu=———|r—
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F1G. 2(c). Streamlines and isotherms for § = 10,G = 2, P =
and 123°

For § = 0, local Nusselt number for the inner cylinder
Nu, ., can be obtained from the calculations of Mack
and Hardee [7]. In Fig. S, is shown the plot of
(Nu/Nu,_q) vs. 8 for G = 2 and for various values of S.
It is found that Nu decreases with S.

When the inner sphere is maintained at constant
heat flux, streamlines and isotherms depend on Q. The
case Q0 = O corresponds to the inner sphere surface
being thermally insulated. For this case, Dy, = 0,8 =
0.5 and from (12), (14) and (15) one finds that all the
qualitative features of the flow will be the same as for §
= oo, but the directions of the flow will be reversed.
Figure 6 shows the sketch of streamlines and isotherms
for this case. For finite values of Q, flow patterns, radial
and azimuthal velocity components are shown in Figs.
7-10. These are similar to those of finite values of S, but
the flow is in opposite direction.

For large values of Q, the flow pattern consists of
single cells of ‘crescent eddy’ type and is similar to that

S. N Sing and §. M. Erniorr

0.7, R = 2, Radial velocity changes signat 0 = 53

for § = 0. But the flow lines are downward along the
inner sphere (counter clockwise} and upward along the
outer {clockwise). Isotherms are also shown graphi-
cally in Figs. 7 and 8. These are quite different from
those in which the inner sphere is kept at constant
temperature.

Although the detailed solution curves for flow
pattern and temperature distribution are presented in
this paper for a small value of the Grashof number
equal to two, P = 0.7 and R = 2, the influence of
variation of § and Q on the plume formation on a body
in a thermally-stratified medium is brought out clearly.
The plume formations on an isothermal inner sphere
are in gualitative agreement with those reported by
Eichhorn, Lienhard and Chen [8]. But when the inner
sphere is maintained at constant heat flux, the plume-
formation analysis has not been experimentally pre-
sented in the literature and the results obtained in this
paper seem to be new.
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FiG. 3(a). Radial component of velocity vs, radial position for

$=1,6=2P=07,R=2y, vanisl:es and changessignat . 3{c). Radial component of velocity vs. radial position for
6 = 18 and 110°. §=10,G = 2,P = 0.7, R = 2.v, vanishes and changes sign at
L 6 = 53 and 123°.
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Fic. 3(b}. Radial component of velocity vs. radial position for  Fi1G.4(a). Theta component of velocity vs. radial position for
§=25G=2,P=07R = 2.0, vanishesand changessign = 1,G=2,P = 0.7,R = 2., vanishes and changessignat @
at 8 = 45 and 118°. = 20°.
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FiG. 4(b). Theta component of velocity vs. radial position for  F1G. 4(c). Theta component of velocity vs. radial positionfor §
S =25G =2 P =07 R =2 v,vanishes and changes sign = =10,G=2,P=07,R = 2. v, vanishes and changessign at ¢
at § = 68°. = 85°.
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FiG. 5. Ratio of local Nusselt number for the inner sphere to the Nusselt number for § = 0 vs. angular
position.
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F1G. 6. Streamlines and isotherms for the case with the inner sphere thermally insulated. § = 0.

F1G. 7. Streamlines and isotherms for @ = 0.1, G = 2, P = 0.7, R = 2. Radial velocity changes sign at 8 = 51
and 123°,
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FiG. 8. Streamlines and isothermsforQ = 0.3. G = 2. P =

S. N.SINGH and J. M. ELLi0T1

= (.7, K = 2. Radial velocity changes sign at § = 41
and 119

F1G. 9. Radial component of velocity vs. radial position for ¢
=03,G =2,P = 0.7, R = 2.y, vanishes and changes sign at
(= 41 and 119".
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Fic;. 10. Theta component of velocity vs. radial position for Q
=03.G = 2. P = 0.7, R = 2.1, vanishes and changes sign at
62
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CONVECTION NATURELLE ENTRE DES SPHERES CONCENTRIQUES
DANS UN MILIEU LEGEREMENT STRATIFIE THERMIQUEMENT

Résumé—On obtient des solutions analytiques en développement de perturbation en puissances du nombre
de Grashof pour un écoulement permanent et axisymétrique de fluide visqueux entre deux sphéres
concentriques. Un champ de gravité agit verticalement vers le bas. La sphére extérieure est maintenue a une
température variable de telle sorte que la stratification verticale est réalisée. L’analyse est présentée dans deux
cas: lorsqu’une condition de flux constant est imposée sur la sphére intérieure et lorsque la température de
surface est maintenue constante. Dans chaque cas, on montre les lignes de courant, les isothermes et les
vitesses dans un plan méridien. Dans le cas de la sphére intérieure isotherme, un paramétre adimensionnel de
stratification § gouverne I’écoulement. Des solutions pour § = 0 correspondent au cas sans stratification.
Quand S tend vers l'infini, la configuration de I’écoulement posséde une symétrie a la fois verticale et
horizontale. Mais quand la sphére intérieure est maintenue a flux constant, 'écoulement et le champ de
température sont gouvernés par un autre paramétre adimensionnel Q. Le cas Q = 0 correspond a la sphére
interne isolée thermiquement. Dans ce cas, '’écoulement est semblable a celui ou S tend vers I'infini, mais les
directions des lignes de courant sont inversées.

FREIE KONVEKTION ZWISCHEN KONZENTRISCHEN KUGELN IN EINEM MEDIUM
MIT SCHWACHER THERMISCHER SCHICHTUNG

Zusammenfassung — In der vorliegenden Arbeit werden unter Verwendung von Stérgliedansitzen in
Potenzen der Grashof-Zahl analytische Ldsungen fiir stationire, achsensymmetrische Stromung eines
viskosen Fluids erhalten, das zwischen konzentrischen Kugeln eingeschlossen ist. Ein gleichmilBiges
Gravitationsfeld wirkt vertikal nach unten. Fiir die duBere Kugel ist angenommen, daB sie auf variabler
Temperatur gehalten wird, so dall die Bedingungen fiir vertikale Schichtung erfiillt sind. Die Untersuchung
wird fiir zwei Fille durchgefiihrt: es wird eine konstante Wirmestromdichte an der Oberfliche der inneren
Kugel aufgeprigt, oder deren Oberflichentemperatur wird konstant gehalten. Stromlinien, Isothermen und
Geschwindigkeitskomponenten werden fiir jeden Fall in einer axialen Ebene grafisch dargestellt. Im Fall der
isothermen inneren Kugel beherrscht ein dimensionsloser Schichtungsparameter S die Stromung. Losungen
fir § = Oentsprechen dem nicht geschichteten Fall. Wenn S gegen unendlich geht, hat der Strémungszustand
sowohl vertikale als auch horizontale Symmetrie. Wenn jedoch auf der inneren Kugeloberfliche konstante
Wirmestromdichte herrscht, werden die Strémungs- und Temperaturfelder durch einen anderen
dimensionslosen Parameter Q bestimmt. Der Fall @ = 0 entspricht der thermisch isolierten inneren Kugel.
In diesem Fall ist die Strémung dhnlich derjenigen, die sich einstellt, wenn S gegen unendlich geht, aber die
Richtungen der Stromlinien sind umgekehrt.
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ECTECTBEHHASA KOHBEKHHMA MEX]Y KOHUEHTPHUMECKHUMU COEPAMH
B CPEJE CO CJIABOW TEPMMYECKOU CTATUOUKAUUEN

AnnoTamms - - Paznoxkenuem B psaa no creneHsam 4ucina ['pacroda nonyHveHsl aHAIHTHYECKHE PELLECHHs
U181 CTALMOHAPHOTO OCECHMMETPHYHOTO TEYEHHS BAIKOH XHIAKOCTH MEXJY ABYMS KOHUEHTPHYSCKHMH
chepamu. OIHOPOAHOE FPABHTALMOHHOE NOJIC HANPABICHO BepTHKasHO BHU3. [lpennonaraercs. 4ro
nepeMeHHOM ABARETCHE TEMIEPAaTYypa BHEWHEH cephbl, TRK YTO CO3AAIOTCS YCIOBHS [UIS CTPATHOMKA LMK
B BEPTHKANbLHOM HANPABICHUN. AHUIM3HPYHOTCH ABA CAYYAH: HOCTONHHBIH TEMIOBOH OTOK, NOABOIM-
Mblii K IOBEPXHOCTH BHYTpeHHeH cdepbi. H NOCTOSHHAR TeMACPaTYPa MOBEPXHOCTH 770 chepul. din
KaXI0ro Chay4as AaHo rpaduueckoe H300paxenue JHHKH TOKa, H30TEPM M KOMIOHEHT CKOPOCTH Ha
oceBoil MI0ckOCTH. [Ins H30TepMHYeCcKOH BHYTPeHHeH cdepbl TedeHHEe KOHTPONHMPYETCH NapaMeTpoMm
crpatudukaumu. Pewenne s S = 0 coorBetcTBYeT OTCyTCcTBHIO crpaTHdukaunu. [Ipn S. crpems-
weMcsa K OeCKOHEYHOCTH, TedeHHE XapaKTepH3YeTCs KaK BEPTHKANbLHOW, Tak H ['OPH3IOHTAJbHOH
cummerpreit. OIHAKO NPU NOCTOSHCTRE TENIOBOTO NOTOXKA Ha BHYTPeHHeH cdepe rMApOIMHAMUYECKHI
H TEMNepaTypHbI PeXHMbI KOHTPOJMPYIOTCH ApYrMM Oespa3smephbimv napametrpom ({). Pasencrso
O = 0 COOTBETCTBYET CHY4AI0 TCPMHYECKH HIONHPOBaHHOMN BHYTPeHHeH chephl. Iaech KapTuna Teuenus
anasniorudHa Tod, kotopas Habmomaercs apy S— 7. HO ¢ TPOTHBOMOJOXHbLIM HANUPARICHHEM
JHHHA TOKA,



